Tritium Production Analysis and Management Strategies for a Fluoride - salt - cooled High - temperature Test Reactor ( FHTR )
نویسندگان
چکیده
The Fluoride-salt-cooled High-temperature Test Reactor (FHTR) is a test reactor concept that aims to demonstrate the neutronics, thermal-hydraulics, materials, tritium management, and to address other reactor operational and maintenance issues before a commercial Fluoride-salt-cooled High-temperature Reactor (FHR) can be deployed. The MIT Nuclear Systems Design class proposed a design for a 100 MW FHTR that uses enriched7Li flibe (Li2BeF4), has both thermal and fast flux testing positions for fuel and materials testing, and provides a neutron flux greater than 3E14 n/cm2 -s for accelerated irradiation testing. One of the key technical issues of the FHR and FHTR is tritium generation from the flibe coolant and its radiological control. The objectives of this study are: 1) to provide an overview of tritium production in various types of nuclear systems, 2) to estimate the tritium source term in the FHTR using the ORIGEN-S computer code, and 3) to propose a tritium management strategy for the FHTR. A review of existing nuclear systems shows that tritium is the primary radionuclide in liquid and gaseous tritium release. Light water reactors release up to several hundred curies per year for which various tritium removal and control strategies have been developed and implemented. Using the ORIGEN-S code analysis, tritium production for the MIT FHTR design at 20 MW is estimated to be about 2600 Ci per year (based on a 70% capacity factor and-10 Ci/day), with 99.99% enriched7Li flibe. Using this source term, a tritium removal rate of >90% is proposed as a design target for the tritium control system of the FHTR in order to maintain tritium release within the limits of existing nuclear reactors. Proposed tritium management strategies for the FHTR include increasing the 7Li enrichment, carbon-based or metallic getters, and inert gas sparging with a high-temperature recombiner system. Thesis Supervisor: Lin-Wen Hu Title: Associate Director, MIT Nuclear Reactor Laboratory
منابع مشابه
The Advanced High-Temperature Reactor: High-Temperature Fuel, Molten Salt Coolant, and Liquid-Metal-Reactor Plant
The Advanced High-Temperature Reactor is a new reactor concept that combines four existing technologies in a new way: (1) coated-particle graphite-matrix nuclear fuels (traditionally used for helium-cooled reactors), (2) Brayton power cycles, (3) passive safety systems and plant designs from liquid-metal-cooled fast reactors, and (4) low-pressure molten-salt coolants with boiling points far abo...
متن کاملEfficiency of hydrogen production systems using alternative nuclear energy technologies
Nuclear energy can be used as the primary energy source in centralized hydrogen production through high-temperature thermochemical processes, water electrolysis, or high-temperature steam electrolysis. Energy efficiency is important in providing hydrogen economically and in a climate friendly manner. High operating temperatures are needed for more efficient thermochemical and electrochemical hy...
متن کاملOne-Dimensional Analysis of Thermal Stratification in AHTR and SFR Coolant Pools
Thermal stratification phenomena are very common in pool type reactor systems, such as the liquid-salt cooled Advanced High Temperature Reactor (AHTR) and liquid-metal cooled fast reactor systems. It is important to accurately predict the temperature and density distributions both for design optimization and accident analysis. Current reactor system analysis codes only provide lumped-volume bas...
متن کاملAn overview of dual coolant Pb–17Li breeder first wall and blanket concept development for the US ITER-TBM design
An attractive blanket concept for the fusion reactor is the dual coolant Pb–17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb–17Li is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetoh...
متن کاملFlibe-Tritium Research for Fission or Fusion Reactors at Kyushu University
There is increasing interest in using ionic molten-salt Flibe not only as self-cooled tritium(T)-breeding material in a fusion reactor blanket but also as fuel solvent of molten-salt fission reactors. Application of Flibe to T-breeding fluid for a stellarator-type fusion reactor operated at a high magnetic field brings large simplification of its blanket structure, allowing continuous operation...
متن کامل